The Simple Group of Order 2520

نویسندگان

  • G. A. MILLER
  • F. N. Cole
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A NEW CHARACTERIZATION OF SIMPLE GROUP G 2 (q) WHERE q ⩽ 11

Let G be a finite group , in this paper using the order and largest element order of G we show that every finite group with the same order and largest element order as G 2 (q), where q 11 is necessarily isomorphic to the group G 2 (q)

متن کامل

On some Frobenius groups with the same prime graph as the almost simple group ${ {bf PGL(2,49)}}$

The prime graph of a finite group $G$ is denoted by $Gamma(G)$ whose vertex set is $pi(G)$ and two distinct primes $p$ and $q$ are adjacent in $Gamma(G)$, whenever $G$ contains an element with order $pq$. We say that $G$ is unrecognizable by prime graph if there is a finite group $H$ with $Gamma(H)=Gamma(G)$, in while $Hnotcong G$. In this paper, we consider finite groups with the same prime gr...

متن کامل

A Characterization of the Small Suzuki Groups by the Number of the Same Element Order

Suppose that  is a finite group. Then the set of all prime divisors of  is denoted by  and the set of element orders of  is denoted by . Suppose that . Then the number of elements of order  in  is denoted by  and the sizes of the set of elements with the same order is denoted by ; that is, . In this paper, we prove that if  is a group such that , where , then . Here  denotes the family of Suzuk...

متن کامل

OD-characterization of $U_3(9)$ and its group of automorphisms

Let $L = U_3(9)$ be the simple projective unitary group in dimension 3 over a field  with 92 elements. In this article, we classify groups with the same order and degree pattern as an almost simple group related to $L$. Since $Aut(L)equiv Z_4$ hence almost simple groups related to $L$ are $L$, $L : 2$ or $L : 4$. In fact, we prove that $L$, $L : 2$ and $L : 4$ are OD-characterizable.

متن کامل

Characterization of $mathbf{L_2(p^2)}$ by NSE

Let $G$ be a group and $pi(G)$ be the set of primes $p$ such that $G$ contains an element of order $p$. Let $nse(G)$ be the set of the number of elements of the same order in $G$. In this paper, we prove that the simple group $L_2(p^2)$ is uniquely determined by $nse(L_2(p^2))$, where $pin{11,13}$‎.‎

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007